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Telephone Traffic Time Averages
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This paper describes the determination of the first four semi-invariants of ihe 
distribution of the average, over an arbitrary time interval, of traffic carried by a 
telephone system with an infinite number of trunks, during a period of statistical 
equilibrium. Both finite and infinite numbers of independent call sources are con
sidered, and the distribution function of call holding times is left general.

1. I n t r o d u c t io n

FOR mathematical studies of telephone traffic, like those of call loss or 
delay which are used in trunking engineering, the traffic is considered 

as ajflow of probability in time. In the period of most importance, the busy 
hour, this flow is usually regarded as stationary; that is to say, the proba
bility of a given number of busy trunks, or the probability of delay of an 
incoming call (or any other probability of the system which comes in ques
tion) is taken as independent of the particular moment in the busy hour at 
which the system is examined. The system is said to be in statistical equilib
rium

For such theoretical studies, the statistical quantities which determine 
these probabilities, like the rate at which calls appear, are of course taken 
as given, but in the application they must be determined by observations, 
such as those being taken in the current extensive program of traffic meas
urements. Here a difficulty appears. To abridge the extensive amount of 
observational material, either measurements are made of traffic averages 
over periods small compared to the busy hour (but not small enough to be 
neglected) or the measurements of continuous recorders are averaged by 
hand. It may be noticed here that for application of the results given below 
the traffic averages obtained by measurements must be those of a con
tinuous device which records all traffic changes and not, as in some measuring 
devices, those obtained from a number of “ looks”  at points within the 
averaging interval. But to use these measurements in determining the 
traffic parameters by standard sampling theory, a corresponding theoretical 
study of the averages is necessary.

Such a study, within limits to be described presently, is given here. No 
attempt is made to describe the sampling studies possible from the results 
reached. These seem to be of many kinds, not necessary to describe, but for
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concreteness it may be mentioned that the most important, at the moment, 
seems to be that of setting confidence limits for the average traffic.

The most important of the limits to this study are those implied by the 
assumptions of statistical equilibrium with fixed average, and an infinite 
number of trunks. The former limits application to periods in which, roughly 
speaking, average traffic is neither rising nor falling;- the latter is justified 
only by the extreme mathematical difficulties produced by assuming other
wise. The traffic variable is the number of busy trunks in a period of statisti
cal equilibrium. For pure chance call input, the call holding time character
istic is left arbitrary throughout the development, but main interest lies in 
the two extreme cases of constant holding time and exponential holding 
time, which are examined in detail.* For calls from a limited number of 
sources, results are obtained only for exponential holding time.

More precisely, if N(l) is the random variable for the number of busy 
trunks at time /, the variable studied, the average number of calls in an 
interval of length T, is

M(T) N(t) dt (1)

The question is: What are the statistical properties of M(T)?
The results given are the first four cumulants (semi-invariants) of M(T), 

which seem to have the simplest expressions. For the convenience of the 
reader it may be noticed that the first cumulant is the mean, the second 
the second moment about the mean which is the variance, the third the 
third moment about the mean, and the fourth the fourth moment about 
the mean less three times the square of the variance.

In all cases the mean of M(T) is the mean of N(t) and for pure chance call 
input is called b, the average number of calls in unit average holding time, h.

The other cumulants for pure chance call input, kn , have the general 
expression

kn =  b П̂ П-^~ j f  d.xg(x) (T -  x)xn~'\ n =  2,3,4

with

g{x) = ILfit)dt
* F. W. Rabe [6] has reported results for these two cases for relatively long averaging 

intervals, which are verified below. I owe my interest in this problem to a report on Rabe’s 
work made by Messrs. Gibson, Hayward and Seckler in a probability colloquium at Bell 
Telephone Laboratories initiated and directed by Roger Wilkinson.
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and / ( / )  the probability that a call lasts at least l, that is, the distribution 
function of holding times. The specializations of this, for constant holding 
time and exponential holding time, appear in section 4. The results for 
finite source input have a similar character.

The procedure in obtaining these is as follows. The cumulants are de
termined from the ordinary moments (about the origin) and the latter 
are determined by the integration of expectations. Thus the first moment, 
the mean is determined from

E[M(T)\ =  L [  E[/V(01 dl =  E[N(Q] (2)
1 Jq

where E(x) is written for the expectation or mean of x.
Similarly the second moment is given by

E[M\T)) =  i  f f E{N(t)lV0<)] dl du (3)

and so on for higher moments. Correlation effects appear in (3) in 
£[Дг(/)Дг(и)] and are included in the development by formulation of transi
tion probabilities, that is, those probabilities determining the traffic flow 
in time. The transition probability Pjk(l) is defined as the probability of 
transition in / from j  calls in progress (busy trunks) to k calls in progress, 
and fixes the inter-relatedness of call probabilities at different time epochs. 
Only for large values of t are these probabilities independent.

Hence, the first task is to determine these simple transition probabilities, 
then those of double and triple transitions, then the expected values of 
pairs, triples and quadruples of numbers of busy trunks, and finally the 
moments.

2. T r a n s it io n  P r o b a b il it ie s

For exponential holding time, and infinite sources, infinite trunks, these 
probabilities have already been determined by Conny Palm [5]. Palm’s 
work has been summarized both by Feller [1] and by Jensen [3], and de
scribes the whole process, not merely the equilibrium condition. For the 
equilibrium condition, a different procedure,* similar to that used by 
Newland [4] for another purpose, allows the assumption of a more general 
holding time characteristic.

* Thanks are clue S. O. Rice for suggesting this, as well as for many corrections and 
improvements. I also have had the advantage of a careful reading of the mss. by E. L. 
Kaplan.
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For infinite sources, and calls arriving individually and collectively at 
random with average density a, the well-known formula for the probability 
that exactly k calls arrive in time interval / is the Poisson

*■*(/) =  e~a'{at)k/k\ (4)

Then, if k) is the conditional probability of transition from i to j
when k calls arrive in time /,

P y (0 =  Z  Pijif, к)жк(1) (5)jt-O

Consider P 0),  that is the (conditional) transition probabilities when 
no calls arrive. Let the probability that a call lasts at least t be/( /) ,  so that 
the average holding time h is given by

h =  [  u[—f'(u)} du =  [  / ( « )  du (6)
Jo Jo

The i calls initially in process are independent of each other. Select one of 
them and suppose the time from its arrival (its age) is h . Then the proba
bility that it will also exist / units later is the conditional proba
b ility /^  +  /i)//(/i) . Since in equilibrium conditions all moments of arrival 
have equal probability, the corresponding probability for an arbitrary call is

g(0 =  jf  fit +  h) dh -f- |  f(h) dt =  j J  / ( « )  du (7) 

Hence the transitional probability Рц(1; 0) is the binomial expression

P.XLO) =  Q g ' ( l  -  *)*-' (8)

and its generating function is

Pid, *; 0) =  2 > « ( / ;  o )x> =  [i +  (» -  i)g l1' (9)

In (8) and (9), for brevity, the argument of g is omitted.
Now, suppose one call arrives in interval l. The moment of arrival is 

uniformly distributed in l\ that is, if i<i is the moment of arrival,

Pr(u <  iix <  и +  du) =  du/t

and the probability that a call arriving at an arbitrary moment will be in 
existence at time / is, say,

Q0) =  f / 0  -  u) ^  \ /■ '/(« ) du =  у (1 -  git)) (10)
Jo t t Jo l
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The corresponding generating function is

i  -  Q(D +  m )  =  i +  (* -  i )e ( o

and, since calls arriving are independent, the generating function for k 
calls arriving is

[! +  ( * -  DG1*

and

PiU, *5 k) =  [1 +  (.г- -  l)g ]'[l +  (.г- -  1 )0* (11)

Hence, finally by (5),

PiO] x) =  E  Pa (<)*'

=  [1 +  (* -  DgY £  [1 +  (* -  1)Q1* ■—0 k 1

=  [1 +  (x — l)g ]' exp (-г- -  1) at Q 

=  [1 +  (x — l)g ]‘ exp (:v — 1) ah (1 -  g) (12^

The last step uses (10).
This is the generating function for the simplest transition probabilities, 

and is quite like Palm’s result; indeed, for exponential holding time g = f  =  
е_!/л The probabilities themselves are obtained by expansion of the generat
ing function in powers of x, or by substituting g for e~'lh in Palm’s result. 
But they are not needed here; the generating function is most apt for deter
mining the averages of interest, as will appear.

Before going on to the other transition probabilities, it is interesting to 
notice certain checks of equation (12). In statistical equilibrium the traffic 
has Poisson density (Palm l.c.) that is, in the present notation

Pr(N(t) = k) =  e~bbk/k!

where b = ah. This of course is independent of time. Then, if iV(0) has this 
density, so should iY(/) as determined from ЛГ(0) and the transition proba
bilities implicit in (12). This is verified by

E  Pi (l, x)e~bb'/il = exp (x -  1)6(1 -  g) E  U +  0» -  l)gl’ г!

=  exp [(.г — 1)6(1 — g) — 6 +  6 +  (x — l)6g] (13) 

=  exp (ж — 1)6.
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Also, g(0) =  1 and g(=°) =  0 so that

Pi{0, x) =  [1 +  (-г- -  1)]< =  .x 
Л (° ° , Л-) =  exp (.г- -  1)6

(14)

(15)

showing that in zero time no transit to another state is possible, and in 
infinite time the equilibrium probabilities are reached no matter what the 
initial state has been.

Finally, in a Markov process (cf. Feller [2J, Chap. 15) the simple transi
tion probabilities alone are needed since

which is true only for exponential holding time.
For the next transition probability Рцк(1, «■), consider first the condition 

in which no call arrives in the whole interval I +  u. As before

where for convenience gt is written for g(l). For the next transit, however’ 
there is a difference, namely

since gt+u/gt is the conditional probability that a call which has lasted l 
will last и more; Pjk(u) is the conditional probability of a transit from j  
to к in m, given the transit i to j  in I.

The generating function for the double transition probabilities in this 
case is, then,

X  X  Рцк(1, 1Г,0)х3ук =  [1 +  (.x -  1 )gt +  x(y — l)gi+„]' (16)
3 к

Now suppose a single call arrives at random in interval /. As before, the 
probability that it will occupy a trunk at time l is <2(/) =  ///- ‘ (1 -  g(l))

Pijk(t, « )  =  P,j(t)Pjk(u)
A test for this is the Chapman-Kolomogorov equation, namely 

Pik{t +  it) =  X ) PijO)Pjk(u)

Using (12), the corresponding relation of generating functions is 

[1 +  (x -  1 )g(l +  « ) ] ‘ exp b(x -  1)[1 -  g(t +  «)]
=  [1 +  (.v -  l)g (0g(M)]' exp b(x -  1)[1 -  g(0g(«)b  

so the process is Markovian only if

g(l +  u) =  g{l)g(u)
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and the conditional probability that it will also occupy a trunk at time 
t +  и is

7 [ / ( <  +  « -  x) dx -4- Q{1)
l J o 

or

The corresponding generating function, with x and у the indicators of calls 
at / and / +  « , resp. is

1 -  Q(i) +  Ш 1  -  R(i, « )]*  +  Q № (t ,  u)xy
or

1 +  (re -  1)(1 -  g{t))h/l +  x(y -  l)[g(«) -  g{t +  u)]h/l

The generating function for c calls in this interval is this expression raised 
to the c’ th power, since calls arrive independently; and since c calls arrive 
with probability e~at(al)c/c\, the generating function for calls arriving in 
this interval is

E  [1 +  -  №  +  x(y -  \)QR\ce-at{al)c/c\
(17)

=  exp b[(x -  1)(1 — g(f)) +  x(y -  l)(g(u) -  g(l +  и))]

For brevity Q and R have been written for Q(l) and R(l, 11).
Finally the generating function for calls arriving in /, / +  u, is

exp b(y -  1)(1 -  g(u)) (IS)
Hence

E  E  PijkO, и)х’ук =  [1 +  (.г- -  l)g(/) +  x(y -  l)g(l +  « )] '
i к

■ exp Ж.г- -  1)(1 -  g(l)) +  (y -  1)(1 -  g(n)) (19)

+  x(y -  1 )(g («) -  g(l +  m))]

By similar argument, the generating function for triple transition proba
bilities is

E  E  E  PijktU, u, v)x'ykz(
j к г

=  [1 +  (re -  l)g, +  x(y -  l )g l+„ +  xy(z -  l)g l+u+>]‘

• exp b((x — 1)(1 — g() +  (y -  1)(1 -  gu) +  (20)
(z -  1) (1 -  gv) +  x(y -  l)(g „  -  g,+u) +

y(z -  l)(g , -  gu+ „)+  rey('s -  l )(g u+„ -  g(+u+„))
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3. E x p e c t e d  C o r r e l a t io n s

Correlation expectations, like Е[ЛГ(/)ЛТ(«)] in equation (3), are needed 
for evaluation of the moments of M(T). They may be determined from the 
transition probability generating functions, if it is agreed, as a matter only 
of convenience, that the time epochs /, u, v, etc. are in that order (I <  и <  
v <  Since, on the assumption of statistical equilibrium, the call
probabilities at the first epoch I, are independent of its value, as already 
noticed, this value may be taken as zero without loss of generality.

Thus for the second moment it is sufficient to determine

* (« ) =  E[N(0)N(u)\ =  £  ipi £ _ / ' Л »  (21)

with pi =  jPr[/V(0) =  i] =  e~bb'/il

Write

Gu(x, у) =  £  p{X' £  Рц(и)у’

By (12), this is the same as

Gu(x, y) =  exp b[x — 1 +  у -  1 +  (.r -  l)(y  -  l)g(«)]

or

and

Hu(x, y) =  Gu{x +  1, у +  1) =  exp b(x +  y +  xyg{u))

ip{u) = d2H
dxdy x,y=0 (22)

=  b2 +  bg{u)

In the same way the second order correlation expectation, that is 

<p(m, v) =  E[N(0)N(u)N(u +  »)],

is obtained from

Gu,v(x, уi z) =  £  piX{ £  £  Р,д(м, v)y’zk

and

Hu.v{x, y, z) =  Gu,v(x +  1, у +  1, z +  1)

=  exp b(x +  у +  г +  xyg(u) +  yzg(v) +  x(y +  1 )zg(ic +  v))

Hence

<р(м, v) = b3 +  b2[g(b) +  g(v) +  g(u +  d)] +  bg(u +  v) (23)
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Finally, the third order correlation turns out to be 

<p(u, v, w) =  E[N (0)N (u)N(u +  v)N(u +  v +  w)]

=  b4 +  b3[g(u) +  g(v) +  g(w)

+  g(u +  v) +  g( v +  w) +  g(u +  v +  w)]
(24 )

+  b-[g(n +  v) +  g(v +  w) +  2 g(u +  v +  w)]

+  62[g(«)£(w) +  g(u +  v)g(v +  w)

+  g(v)g(u +  v +  ^)] +  bg{u +  v +  w)

As will appear, the arrangement of terms in (22), (23) and (24) corresponds 
to the expansion of ordinary moments in terms of cumulants (semi-in
variants); e.g. (24) corresponds to m\ =  i 4 +  6b~k* +  4bk3 +  Zk\ +  k* 
with ki the Pth cumulant (for the Poisson of mean b, ki =  b).

4. M o m e n t s

Moments are obtained from these results by integrations. As already 
noted, equation (2), the first moment is b for any holding time distribution. 

Since there are two ways of ordering the epochs /, u, the second moment is

E[M\T)] =  ~  I dt I duv (l -  u)
1 “ J0 Jo

=  b~ +  I dt I dn g(t: -  u) (25)
1 - Jo Jo

=  b* ~i”  т* L dx g(x^ T ~  ^

The last step is by the formula for reversing the order of integration indi
cated by

dt

The variance or second central moment, which is also the second cumulant 
k i , is then

Var [M(T)] =  E[(M(T) -  6)‘]

=  E[M\T)] -  b2

=  iL (  dx g(x) (T -  x) 
1 1 Jo
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Since there are 3! =  6 ways of ordering 3 epochs, the third moment may 
be written

E[M\T)] =  - 3 dl J du |  dv <p(t -  и, и -  v)

=  b3 +  ~  I dl f  du f dv[g(l — w) +  g(n- — v) +  g(t — d)]
i  0 J0 Jo Jo

I  dl I du [  dv g(l — v)
Jo Jo Jo

+
6b
T3 jo Jo

Here the first triple integral is immediately' evaluated by' use of the identity

2 [  dl f du [  dv[g(l — u) +  g(u — v) +  g(l — »)]
Jo Jo Jo

=  f f f dldudv g(\ t — v \) 
Jo Jo Jo

=  2T [  dx g(x)(T -  x)
Jo

=  I я h /ъ

The last triple integral, by' successive inversions of integration order, turns 
out to be

6b
%  /0 dx ~  x x̂

Hence finally

and

£ [M 3(D ] =  b3 +  3bk2 +  6i  Jo dx g(x)(T -  x)x

h  =  E[(M(T) -  6)3]

=  E[M3{T)] -  3b E[M\T)] +  2b3 

=  E[M3{T)} -  3bk2 -  b3

=  y * i  dx g(x){T -  x)x

(27)

(28)
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The fourth moment is given by
л T pt  r u  (V

Е[м\т)\ =  “ф. f  dl [  dll [  dv I dw <p(t — и, n — v, v 
i 4 Jo Jo Jo Jo

to)

=  b

-)- I I  I dl dn dv dw\g(t — u) +  g(/ — v)

+  g(t — to) +  g(« — v) +  g(n — то) +  g(i> — w)]

+  b~ [  I [  f dl dn dv dw [g(/ — v) +  g(u — w) +  2g(l — и»)]
Jo Jo Jo Jo

pT p t p u  pv

+  b~ I / / / dldudv dw[g(l — u)g{v—w) +  (
Jo Jo Jo Jo

g(t -  г>)g(n -  w) +  g(l -  w)g(u -  »)]
f T p t f U / V  ^

/ / / / dl du dv dw[g(l — to)]
о Jo Jo Jo

+  b

Employing the identities
p T p T p T  p T

4 / / / I dl du dv dw [g(t — u) +  g(t — v) +  g{l — w)
о Jo Jo Jo

T л «  r U rV

o Jo Jo Jo

+  g(« — v) +  g (« — to) +  g(j) — to)]

=  [  [  [ [  dl dii dv dw g(| / — 11 |)
Jo Jo Jo Jo

=  2 r  /T dx g(x) (T -  x) =  T4 h/b,
Jo

dl du dv dw [g(/ — u) g(v — to) +  g(l — v) g(u — to)

+  g(/- — to) g (« — ®)] 

dl dw dv dw g(| I  — и  |)g(| v — to |)

( T  I T pT pT

Jo Jo Jo Jo

=  4 ^  dx g{x)(T -  ж) =  T4 k\/b\

and successive inversion of order of integration, the final result turns out 
to be
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(29)
Е[МЛ (Т)] =  64 +  662*2 +  46*3 +  ЗА*

+  ~  dx g(x)(T -  x)x2

and

*4 =  E[(M(T) -  6)4] -  3£[(М (Г ) -  6)2]

=  Jo dx g(x) {T -  x)x2

It is a tempting surmise that

k„ =  b ^  [  dx g(x)(T — x) s n-2
1 "  Jo

(30)

but this has not been proved. Note that for g(x) =  1, kn = b, the cumulant 
of the Poisson, as it should.

For the two cases of chief interest, constant and exponential holding 
times, the function g(x), in average holding time units (that is, x =  l/li) is 
given by

c.h.t. g(.v) =  1 — .v .v <  1
=  0 x >  1

e.h.t. g(x) =  e~*

and the results are as follows:

Cumulant

*2
*3

*4

*2
*3

*4

Constant Holding Time 
T  <  1 T  >  1

6(1 ~  T/3) 6Г-Ч1 -  1/ЗГ)
6(1 -  Т/2) 6 Г -2(1 -  1/2T)
6(1 -  ЗГ/5) 6Z^3(1 -  3 /5Г)

Exponential Holding Time
2bT-\T -  1 +  e-T]
66Г-3[Т -  2 +  (Г  +  2)е~т] 

12bT~4[2T -  6 +  (Г- +  4Г +  6)е-г]

It may be worth noting that, if the surmise is correct, for constant holding 
time

К  =  6 1
n  — 1 
11 +

6
yn —1 1 »  -  1 1 

n +  1 T

Г  <  1 

Г  >  1

12
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F ig. 1.— Comparison of variances of average traffic for constant and exponential hold
ing times.

F ig. 2.— Cumulants k2, k3, and k* for constant holding time.
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and for exponential holding time

k„ =  b П° 1 ~  ^  [(» -  2)! T -  (и -  1)! +  e "7, (T +  a )" -2]

where in the last term (T +  a)n~- is a symbolic expression or shorthand for

( Г  +  « ) -=  -  2) r - = - « .

and am =  (in + 1 ) ! ;  e.g.
(T +  a )3 =  Г 3 +  6 Г- +  1ST +  24

For small values of T, the two cases coalesce (c_I Pri 1 — x) and at T =  0 
approach b as they should. For large values of T, and constant holding 
time,

kn ~  b/T»-\ (n =  2, 3, 4);
for exponential holding time

kn ~  n\b/Tn~l, (« =  2, 3, 4).

For n =  2, these results agree with Rabe [6].
As T increases, for either holding time, the cumulants are progressively 

smaller, and the approximation of the distribution of M(T)  by a normal 
curve (which has all cumulants, except the first and second, zero) improves. 
This is what follows from the central limit theorem if the subdivision of T 
into a large number of intervals results in mutually independent random 
variables (cf. Rice [7] 3.9).

Figure 1 shows a comparison of the variances (k2) for the two holding 
time cases. Figure 2 shows a comparison of the cumulants k2 , kz and k.t for 
constant holding time, and Fig. 3 shows the same thing for exponential 
holding time.

5. F in it e  S o u r c e s— E x p o n e n t ia l  H o l d in g  T im e  

The generating function for transitional probabilities for N subscribers, 
each originating calls independently with probability X, and for exponential 
holding time, as given by Jensen (l.c.) is as follows:

Pi(l, *) =  [1 +  ?i(* -  1)];[1 +  Ф  ~  (31)
with

_ i . —(Х+тгХ<?o =  p — pe
q\ =  p +  q

p - 1 — q =  X/(X +  y )

7 =  1 /h

14



It should be noticed that for / =  со; qa =  ql =  p anci

P i i " ,  x) =  [1 +  p(x -  1)]* (32)

The right hand side is the binomial generating function and, as independent 
of i, is the generating function for the statistical equilibrium probabilities; 
that is

Pr [NO) =  k] =  (J 'j  /  qN~k

Also the process is Markovian since

Z  ** Z  Pij(l)Pjk(u) = Z ^ « (/)[ l +  qiu(x -  1)]J' [1 +  q0u(x -  1)]AWк i j

= [1 +  (qou +  quqiu — quqou)(x — 1)]*

[1 +  (?ou +  Qotqiu — qotqou)(x — 1)]л - ‘

and

qou +  quqi,, — quqou = 

q<su +  qotqiu ~  qotqon = qo,t+u

Here it has been convenient to indicate by the double subscript the de
pendence of q0 and qi on a time variable.

Moments are obtained by the process given in detail for the infinite 
source case. For brevity it is convenient to use the binomial cumulants 
which are as follows

ко = Npq

k3 = Npq(q -  p)

к3 = Npq( 1 — 6 pq)

and the modified time variable Ti =  (X +  y)T. Then the results are 

h  =  2T ? kJ[Ti -  1 +  e~Tl] 

h  =  6TT3k3[Ti - 2  +  ( T i +  2)<Гг '] 

h  =  122Т*((к« +  « Ю [ 2 Г !  -  6 +  (Ti +  4T, +  6)e~T']

-  /c|iY_1[l -  (Ti +  2)e~Tl +  e~°-Tl})

These of course bear a strong resemblance to the infinite source case (ex
ponential holding tune), to which they converge.
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